Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15210-15221, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585056

RESUMO

Outstanding biodegradability and biocompatibility are attributes associated with particular polyester substances that make this group useful in specific biomedical fields. To assess the potential as a biomaterial, a novel composite consisting of hydroxyapatite (HAp) and unsaturated polyester resin (UPR) was developed in this work. Using a hand-lay-up technique, various percentages (50, 40, 30, 20, and 10%) of HAp were reinforced into the UPR matrix to fabricate composite materials out of glass sheets. Prior to processing of the composite samples, hydroxyapatite was chemically synthesized in a wet chemical manner. Using a universal testing machine (UTM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA), the fabricated samples were characterized. The crystallographic parameters of synthesized hydroxyapatite (HAp) were also estimated through a range of formulas. The optimal amount for hydroxyapatite was 40% according to the findings of the tensile strength (TS), tensile modulus (TM), percentage of elongation at break (EB), bending strength (BS), and bending modulus (BM). Improvements in TS, TM, BS, and BM for the ideal combination were 39.39, 9.21, 912.05, and 259.96%, in each case, over the controlled one. Thermogravimetric analysis (TGA) has been implemented to determine the degradation temperature of the fabricated composites up to 600 °C.

2.
RSC Adv ; 14(16): 11570-11583, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38628663

RESUMO

The textile industry, a vital economic force in developing nations, faces significant challenges including the release of undesired dye effluents, posing potential health and environmental risks which need to be minimized with the aid of sustainable materials. This study focuses on the photocatalytic potential of hydroxyapatite together with different dopants like titanium-di-oxide (TiO2) and zinc oxide (ZnO). Here, we synthesized hydroxyapatite (HAp) using different calcium sources (calcium hydroxide, calcium carbonate) and phosphorous sources (phosphoric acid, diammonium hydrogen phosphate) precursors through a wet chemical precipitation technique. Pure and doped HAp were characterized via different technologies, which consist of X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), as well as UV-vis spectroscopy. The effectiveness of the synthesized photocatalyst was evaluated by its interactivity with synthetic azo dyes (Congo red). The photodegradation of Ca(OH)2_HAp, CaCO3_HAp, ZnO-doped HAp as well as TiO2-doped HAp, were obtained as 89%, 91%, 86%, and 91%, respectively. Furthermore, at neutral pH, TiO2-doped HAp shows the highest degradation (86%), whereas ZnO-doped HAp possesses the lowest degradation (73%). Additionally, various XRD models (Monshi-Scherrer's, Williamson-Hall, and Halder-Wagner methods) were employed to study crystallite dimension.

3.
RSC Adv ; 14(18): 12386-12396, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38638810

RESUMO

In this research, we explain the production of sodium-doped hydroxyapatite (Na_HAp) via wet chemical precipitation, followed by crystal modification. To enhance its photocatalytic activity different % of (0.25, 0.5, 1, and 2) sodium doped into HAp crystal. It has been demonstrated that doping is an effective method for modifying the properties of nanomaterials, such as their optical performance and chemical reactivity. Several instrumental approaches were used to characterize this newly synthesized sodium-doped HAp (Na_HAp), e.g. scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV-vis spectrometry were used to analyze the morphology, elemental composition, crystal structure, and optical bandgap, respectively. Under sunlight irradiation, the new Na_HAp photocatalyst was put to use in the process of degrading pharmaceutical pollutants such as antibiotics (amoxicillin and ciprofloxacin). It was found that using a 0.1 g dose of 1% Na_HAp under specified conditions, such as a pH of 7 and 120 minutes of sunlight irradiation, resulted in degradation percentages of 60% and 41.59% for amoxicillin and ciprofloxacin, respectively. Different radical scavengers were utilized to determine the reaction mechanism for the photochemical degradation of antibiotics. Additionally, the ability to be reused and the stability of 1% Na_HAp, a newly developed photocatalyst, were assessed. Therefore, this research adds to our understanding of how to optimize redox capacity for the rapid breakdown of a variety of antibiotics when exposed to sunlight.

4.
Chem Asian J ; : e202400220, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654594

RESUMO

The advancement of a sustainable and scalable catalyst for hydrogen production is crucial for the future of the hydrogen economy. Electrochemical water splitting stands out as a promising pathway for sustainable hydrogen production. However, the development of Pt-free electrocatalysts that match the energy efficiency of Pt while remaining economical poses a significant challenge. This review addresses this challenge by highlighting latest breakthroughs in Pt-free catalysts for the hydrogen evolution reaction (HER). Specifically, we delve into the catalytic performance of various transition metal phosphides, metal carbides, metal sulphides, and metal nitrides toward HER. Our discussion emphasizes strategies for enhancing catalytic performance and explores the relationship between structural composition and the performance of different electrocatalysts. Through this comprehensive review, we aim to provide insights into the ongoing efforts to overcome barriers to scalable hydrogen production and pave the way for a sustainable hydrogen economy.

5.
J Mater Chem B ; 12(14): 3376-3391, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506117

RESUMO

The applications of calcium phosphates (hydroxyapatite, tetracalcium phosphate, tricalcium phosphate (alpha and beta), fluorapatite, di-calcium phosphate anhydrous, and amorphous calcium-phosphate) are increasing day by day. Calcium hydroxyapatite, commonly known as hydroxyapatite (HAp), represents a mineral form of calcium apatite. Owing to its close molecular resemblance to the mineral constituents of bones, teeth, and hard tissues, HAp is often employed in the biomedical domain. In addition, it is extensively employed in various sectors such as the remediation of water, air, and soil pollution. The key advantage of HAp lies in its potential to accommodate a wide variety of anionic and cationic substitutions. Nevertheless, HAp and tricalcium phosphate (TCP) syntheses typically involve the use of chemical precursors containing calcium and phosphorus sources and employ diverse techniques, such as solid-state, wet, and thermal methods or a combination of these processes. Researchers are increasingly favoring natural sources such as bio-waste (eggshells, oyster shells, animal bones, fish scales, etc.) as viable options for synthesizing HAp. Interestingly, the synthesis route significantly influences the morphology, size, and crystalline phase of calcium phosphates. In this review paper, we highlight both dry and wet methods, which include six commonly used synthesis methods (i.e. solid-state, mechano-chemical, wet-chemical precipitation, hydrolysis, sol-gel, and hydrothermal methods) coupled with the variation in source materials and their influence in modifying the structural morphology from a bulky state to nanoscale to explore the applications of multifunctional calcium phosphates in different formats.


Assuntos
Materiais Biocompatíveis , Cálcio , Animais , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Durapatita/química
6.
Heliyon ; 10(3): e25347, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327405

RESUMO

Hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] is remarkably similar to the hard tissue of the human body and the uses of this material in various fields in addition to the medical sector are increasing day by day. In this research, mustered oil, soybean oil, as well as coconut oil were employed as liquid media for synthesizing nanocrystalline HAp using a wet chemical precipitation approach. The X-ray diffraction (XRD) study verified the crystalline phase of the HAp in all the indicated media and discovered similarities with the standard database. Several prominent models such as the Scherrer's Method (SM), Halder-Wagner Method (HWM), linear straight-line method (LSLM), Williamson-Hall Method (W-M), Monshi Scherrer Method (MSM), Size-Strain Plot Method (SSPM), Sahadat-Scherrer Method (S-S) were applied for the determination of crystallite size. The stress, strain, and energy density were also computed from the above models. All the models, without the Linear straight-line technique of Scherrer's equation, resulted in an appropriate value of crystallite size for synthesized products. The calculated crystallite sizes were 6.5 nm for HAp in master oil using Halder-Wagner Method, and 143 nm for HAp in coconut oil using the Scherrer equation which were the lowest and the largest, respectively.

7.
J Biomater Appl ; 38(8): 915-931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346020

RESUMO

Multifunctional and biodegradable dressings with high mechanical strength and good antibacterial activity are crucial in fundamental health services. This study was initiated to prepare a novel curative wound dressing film consisting of natural biodegradable gelatin (G) and polylactic acid (PLA) with silver nanoparticles (AgNPs) where glutaraldehyde (GA) was used as compatibilizer. The prepared composite films addressed the poor thermal and biological stability of G and the limited fluid retention capacity of PLA. Silver nanoparticles were prepared by basic chemical reduction and reinforced on polymer films using simple solvent casting, which obviated common clinical infections and accelerated wound closure rate (p < .05). Fourier transform infrared (FTIR) studies confirmed composite formation through H-bonding and X-ray diffraction (XRD) revealed increased crystallinity due to incorporating AgNPs. Films with G, PLA & GA (50:50:5 by volume) introduced the best elasticity & strength with excellent fluid retention properties (p < .05). Scanning electron microscopy (SEM) images unfolded surface morphology and presence of agglomerated AgNPs on film surfaces. Prepared films exhibited significant antimicrobial efficacy against Staphylococcus aureus and Pseudomonas sp. and showed excellent cell viability (>97 %) in Vero cell line. Finally, an in vivo mouse model study showed 99.7 % contraction (p < .05) within 12 days, which was most effectual and 12 % faster than conventional gauge bandages. These results demonstrated the promising and cost-effective potential of the prepared film for wound healing.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Camundongos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Gelatina/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres , Glutaral , Bandagens
8.
RSC Adv ; 14(5): 3548-3559, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38259993

RESUMO

Hydroxyapatite (HAp) is comparable to materials in bone because its chemical components are similar to those contained in animal bone, and thus, its bioactive and biocompatible properties are similar. There are applications for HAp and relevant calcium phosphate in the medical and industrial sectors, and due to the rising demand for HAp nanoparticles, considerable work has been performed to develop a variety of synthetic pathways that incorporate scientifically and practically novel aspects. Numerous studies have been conducted to examine how changes in reaction parameters will successfully influence crucial HAp features. HAp can also be synthesized from biogenic sources such as HAp-rich fish scales or animal bones as an alternative to chemical precursors. Various preparation techniques produce crystals with varying sizes, but it has been found that nano-sized HAp exhibits a greater number of bioactive properties as compared to micron-sized HAp. Rather than considering conventional methods, this review focuses on alternative approaches such as emulsion, pyrolysis, combustion, and sonochemical methods along with waste bio-sources (biogenic sources) to obtain HAp. We summarize the currently accessible information pertaining to each synthesis process, while also focusing on their benefits and drawbacks.

9.
Sci Rep ; 13(1): 13531, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598270

RESUMO

Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes mild cold-like symptoms and severe lower respiratory tract infections, causing hospitalizations in children, the elderly and immunocompromised individuals. Due to genetic variability, this virus causes life-threatening pneumonia and bronchiolitis in young infants. Thus, we examined 3600 whole genome sequences submitted to GISAID by 31 December 2022 to examine the genetic variability of RSV. While RSVA and RSVB coexist throughout RSV seasons, RSVA is more prevalent, fatal, and epidemic-prone in several countries, including the United States, the United Kingdom, Australia, and China. Additionally, the virus's attachment glycoprotein and fusion protein were highly mutated, with RSVA having higher Shannon entropy than RSVB. The genetic makeup of these viruses contributes significantly to their prevalence and epidemic potential. Several strain-specific SNPs co-occurred with specific haplotypes of RSVA and RSVB, followed by different haplotypes of the viruses. RSVA and RSVB have the highest linkage probability at loci T12844A/T3483C and G13959T/C2198T, respectively. The results indicate that specific haplotypes and SNPs may significantly affect their spread. Overall, this analysis presents a promising strategy for tracking the evolving epidemic situation and genetic variants of RSV, which could aid in developing effective control, prophylactic, and treatment strategies.


Assuntos
Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Idoso , Lactente , Humanos , Estudo de Associação Genômica Ampla , Vírus Sincicial Respiratório Humano/genética , Austrália/epidemiologia , China
10.
Sci Total Environ ; 858(Pt 3): 159350, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265620

RESUMO

Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewater samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target nonstructural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship between COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Seguimentos , Águas Residuárias , Marcadores Genéticos , RNA Viral
11.
RSC Adv ; 12(52): 34080-34094, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505682

RESUMO

This research deals with the photocatalytic activity of hydroxyapatite and the improvement of efficiency by doping various percentages of copper; the catalysts were synthesized by the wet-chemical method. Pure and copper-doped photocatalysts were characterized by several techniques including X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and UV-Vis spectroscopy. The competency of pure and copper-doped hydroxyapatite as photocatalysts was assessed by their interaction with Congo red dye. The crystallographic parameters of the catalysts were also estimated by employing the XRD technique, and a relationship was established between the calculated parameters and photocatalytic performance. Crystallite size was calculated from various model equations, which revealed an acceptable crystallite size of 42-68 nm. Copper doping in hydroxyapatite impressively augmented the photocatalytic efficacy, for example 99% dye was degraded upon 0.63% Cu-doping compared to 75% for the pure HAp, which was exemplified not only by the reaction rate but also by the quantum yield. The degradation percentages changed with time but became fixed at 200 min. The molar extinction coefficient was estimated by employing the Beer-Lambert law and further utilized to compute the photonic efficiency of the catalysts. In the study of the photochemical reaction, a simplified reaction process was proposed, and the potentials of the conduction band and valence band were assessed, which influenced the activity. The doping of Cu in crystalline hydroxyapatite will enhance the photocatalytic activity towards Congo red dye under all experimental conditions.

12.
Curr Opin Environ Sci Health ; : 100396, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36320818

RESUMO

Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.

13.
Infect Genet Evol ; 106: 105385, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368610

RESUMO

Mucormycosis is a life-threatening fungal infection, particularly in immunocompromised patients. Mucormycosis has been reported to show resistance to available antifungal drugs and was recently found in COVID-19 as a co-morbidity that demands new classes of drugs. In an attempt to find novel inhibitors against the high-affinity iron permease (FTR1), a novel target having fundamental importance on the pathogenesis of mucormycosis, 11,000 natural compounds were investigated in this study. Virtual screening and molecular docking identified two potent natural compounds [6',7,7,10',10',13'-hexamethylspiro[1,8-dihydropyrano[2,3-g]indole-3,11'-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,9,14'-trione and 5,7-dihydroxy-3-(2,2,8,8-tetramethylpyrano[2,3-f]chromen-6-yl)chromen-4-one] that effectively bind to the active cavity of FTR1 with a binding affinity of -9.9 kcal/mol. Multiple non-covalent interactions between the compounds and the active residues of this cavity were noticed, which is required for FTR1 inhibition. These compounds were found to have inhibitory nature and meet essential requirements to be drug-like compounds with a considerable absorption, distribution, metabolism, and excretion (ADME) profile with no toxicity probabilities. Molecular dynamics simulation confirms the structural compactness and less conformational variation of the drug-protein complexes maintaining structural stability and rigidity. MM-PBSA and post-simulation analysis predict binding stability of these compounds in the active cavity. This study hypothesizing that these compounds could be a potential inhibitor of FTR1 and will broaden the clinical prospects of mucormycosis.


Assuntos
COVID-19 , Mucormicose , Humanos , Proteínas de Membrana Transportadoras/genética , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Simulação de Dinâmica Molecular , Fungos , Ferro/metabolismo
14.
Heliyon ; 8(10): e11081, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303933

RESUMO

Lung cancer is the primary cause of cancer related deaths worldwide. Limited therapeutic options and resistance to existing drugs are the major hindrances to the clinical success of this cancer. In the past decade, several studies showed the role of microRNA (miRNA) driven cell cycle regulation in lung cancer progression. Therefore, these small nucleotide molecules could be utilized as promising tools in lung cancer therapy. In this review, we highlighted the recent advancements in lung cancer therapy using cell cycle linked miRNAs. By highlighting the roles of the specific cell cycle core regulators affiliated miRNAs in lung cancer, we further outlined how these miRNAs can be explored in early diagnosis and treatment strategies to prevent lung cancer. With the provided information from our review, more medical efforts can ensure a potential breakthrough in miRNA-based lung cancer therapy.

15.
Environ Pollut ; 311: 119679, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753547

RESUMO

Wastewater-based epidemiology (WBE) has emerged as a valuable approach for forecasting disease outbreaks in developed countries with a centralized sewage infrastructure. On the other hand, due to the absence of well-defined and systematic sewage networks, WBE is challenging to implement in developing countries like Bangladesh where most people live in rural areas. Identification of appropriate locations for rural Hotspot Based Sampling (HBS) and urban Drain Based Sampling (DBS) are critical to enable WBE based monitoring system. We investigated the best sampling locations from both urban and rural areas in Bangladesh after evaluating the sanitation infrastructure for forecasting COVID-19 prevalence. A total of 168 wastewater samples were collected from 14 districts of Bangladesh during each of the two peak pandemic seasons. RT-qPCR commercial kits were used to target ORF1ab and N genes. The presence of SARS-CoV-2 genetic materials was found in 98% (165/168) and 95% (160/168) wastewater samples in the first and second round sampling, respectively. Although wastewater effluents from both the marketplace and isolation center drains were found with the highest amount of genetic materials according to the mixed model, quantifiable SARS-CoV-2 RNAs were also identified in the other four sampling sites. Hence, wastewater samples of the marketplace in rural areas and isolation centers in urban areas can be considered the appropriate sampling sites to detect contagion hotspots. This is the first complete study to detect SARS-CoV-2 genetic components in wastewater samples collected from rural and urban areas for monitoring the COVID-19 pandemic. The results based on the study revealed a correlation between viral copy numbers in wastewater samples and SARS-CoV-2 positive cases reported by the Directorate General of Health Services (DGHS) as part of the national surveillance program for COVID-19 prevention. The findings of this study will help in setting strategies and guidelines for the selection of appropriate sampling sites, which will facilitate in development of comprehensive wastewater-based epidemiological systems for surveillance of rural and urban areas of low-income countries with inadequate sewage infrastructure.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Países em Desenvolvimento , Humanos , Pandemias , Prevalência , Saneamento , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
16.
Sci Rep ; 12(1): 10260, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715447

RESUMO

Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs' aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.


Assuntos
Canais de Cálcio Tipo T , Neoplasias da Próstata , RNA Longo não Codificante , Canais de Cálcio Tipo T/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
J Biomol Struct Dyn ; 40(24): 13412-13431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34696688

RESUMO

SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Benzamidas , Proteínas Serina-Treonina Quinases , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/química , Benzamidas/farmacologia , Simulação de Dinâmica Molecular
18.
J Biomol Struct Dyn ; 40(21): 10561-10577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243699

RESUMO

Methicillin-Resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes life-threatening outbreaks such as community-onset and nosocomial infections as emerging 'superbug'. Time and motion study of its virulent property developed resistance against most of the antibiotics such as Vancomycin. Thereby, to curb this problem entails the development of new therapeutic agents. Plant-derived antimicrobial agents have recently piqued people's interest, so in this research, 186 flavonoids compound selected to unmask the best candidates that can act as potent inhibitors against the Penicillin Binding Protein-2a (PBP-2a) of MRSA. Molecular docking performed using PyRx and GOLD suite to determine the binding affinities and interactions between the phytochemicals and the PBP-2a. The selected candidates strongly interact with the different amino acid residues. The 30 ns molecular dynamics (MD) simulations with five top-ranked compounds such as Naringin, Hesperidin, Neohesperidin, Didymin and Icariin validated the docking interactions. These findings are also strongly supported by root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. ADME/T analysis demonstrates that these candidates appear to be safer inhibitors. Our findings point to natural flavonoids as a promising and readily available source of adjuvant antimicrobial therapy against resistant strains in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Flavonoides/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/química
19.
Inform Med Unlocked ; 27: 100798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812411

RESUMO

Genomic data analysis is a fundamental system for monitoring pathogen evolution and the outbreak of infectious diseases. Based on bioinformatics and deep learning, this study was designed to identify the genomic variability of SARS-CoV-2 worldwide and predict the impending mutation rate. Analysis of 259044 SARS-CoV-2 isolates identified 3334545 mutations with an average of 14.01 mutations per isolate. Globally, single nucleotide polymorphism (SNP) is the most prevalent mutational event. The prevalence of C > T (52.67%) was noticed as a major alteration across the world followed by the G > T (14.59%) and A > G (11.13%). Strains from India showed the highest number of mutations (48) followed by Scotland, USA, Netherlands, Norway, and France having up to 36 mutations. D416G, F106F, P314L, UTR:C241T, L93L, A222V, A199A, V30L, and A220V mutations were found as the most frequent mutations. D1118H, S194L, R262H, M809L, P314L, A8D, S220G, A890D, G1433C, T1456I, R233C, F263S, L111K, A54T, A74V, L183A, A316T, V212F, L46C, V48G, Q57H, W131R, G172V, Q185H, and Y206S missense mutations were found to largely decrease the structural stability of the corresponding proteins. Conversely, D3L, L5F, and S97I were found to largely increase the structural stability of the corresponding proteins. Multi-nucleotide mutations GGG > AAC, CC > TT, TG > CA, and AT > TA have come up in our analysis which are in the top 20 mutational cohort. Future mutation rate analysis predicts a 17%, 7%, and 3% increment of C > T, A > G, and A > T, respectively in the future. Conversely, 7%, 7%, and 6% decrement is estimated for T > C, G > A, and G > T mutations, respectively. T > G\A, C > G\A, and A > T\C are not anticipated in the future. Since SARS-CoV-2 is mutating continuously, our findings will facilitate the tracking of mutations and help to map the progression of the COVID-19 intensity worldwide.

20.
Heliyon ; 7(6): e07347, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195444

RESUMO

MicroRNAs play a crucial role in tumorigenesis, tumor progression, and metastasis, and thus they contribute in development of different malignancies including cervical cancer (CC) and colorectal cancer (CRC). Through integrated strategies of computational biology, this study aims to identify prognostic biomarkers responsible for CRC and CC prognosis, and potential therapeutic agents to halt the progression of these cancers. Expression analysis of miRNA datasets of CRC and CC identified 17 differentially expressed miRNAs (DEMs). SYNPO2, NEGR1, FGF7, LIFR, RUNX1T1, CFL2, BNC2, EPHB2, PMAIP1, and CDC25A differentially expressed genes (DEGs) regulated by these DEMs were classified as candidate genes responsible for CRC and CC. Down-regulation of Synaptopodin-2 (SYNPO2) is involved in emergence and progression of these cancers by activating ER, PI3K/AKT, and EMT pathways as well as by suppressing DNA damage response, and cell cycle pathways. Higher methylation rate in promoter region of SYNPO2 could be a possible reason for lowering the expression of SYNPO2 in tumor stages. Hence, the lower expression of SYNPO2 is associated with poor prognosis of CRC and CC and could function as prognostic biomarker and therapeutic target. Fourteen transcription factors were recognized which can activate/inhibit the transcription of SYNPO2 and may be a potential target to regulate expression of SYNPO2 in CRC and CC. Retinoic acid and Estradiol were identified as putative therapeutic drugs for CRC and CC patients. This study will thus help in understanding the underlying molecular events in CRC and CC that may improve the detection of malignant lesions in primary screening and will broaden the clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...